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Abstract
The influence of an underlying carrier flow on the terminal velocity of
sedimenting particles is investigated both analytically and numerically. Our
theoretical framework works for a general class of (laminar or turbulent)
velocity fields and, by means of an ordinary perturbation expansion at small
Stokes number, leads to closed partial differential equations (PDE) whose
solutions contain all relevant information on the sedimentation process. The
set of PDE is solved by means of direct numerical simulations for a class of 2D
cellular flows (static and time dependent) and the resulting phenomenology is
analysed and discussed.

PACS numbers: 47.55.Kf, 47.55.D−, 47.90.+a

1. Introduction

In many situations of interest, particles suspended in fluids cannot be modelled as simple point
tracers. Both drops in gases and bubbles in liquids, and also solid powders in fluids, have a
finite size and their density is, generally speaking, different from that of the advecting fluid.
The description of their movement must then take into account the effects of inertia: this is
why such objects are usually called inertial particles. Understanding the dynamics of these
impurities is an open issue from the theoretical, numerical and experimental point of view
[1–7], and is very relevant in several domains, ranging from geophysics [8–10] to astrophysics
[11, 12], and from industry to biology [13, 14].

Here, our attention will be focused on the sedimentation of inertial particles seeded in
a given flow and subject to the action of gravity. Moreover, we will also consider the effect
of particle diffusivity. The latter is usually neglected in most studies of inertial particles,
assuming that Brownian noise is very small for finite-size particles. However, this is not the
case for tiny particles, and, more importantly, in biophysical applications, in which a limited
capacity of autonomous movement could e.g. be taken into account in this very simplified way.
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Our main aim is to obtain an Eulerian description of the sedimentation process starting from
the well-founded Lagrangian viewpoint for particle motion in the limit of small inertia (i.e.
when collision events can be neglected). Even if we are not going to deal with multi-particle
problems arising at high inertia, such as the formation of caustic patterns and the phenomenon
of clustering, in which a Lagrangian dynamical description is necessary to describe collisions,
in the concluding section we will be able to sketch a comparison with the ‘continuum’
description [3], well known in the literature.

Although our main focus is on sedimentation, or in other words on drift (very relevant
e.g. within environmental sciences in connection to the problem of aerosol dispersion, and
in marine biology in relation to the dynamics of plankton populations), our theory provides
the whole detailed statistical information of particle motion. The probability density function
(PDF) of having a particle in a given position at a certain time is indeed available from our
approach. As a future perspective, we would like to extend our formalism to attack also
more general, or higher-order, effects in particle transport, such as eddy diffusivities and the
possibility of anomalous transport in the horizontal direction [15, 16].

Our theoretical machinery, which applies for a wide class of velocity fields (either laminar
or turbulent) is tested against numerical simulations (both direct numerical simulations and
Lagrangian simulations) for a class of 2D cellular flows (static and time dependent). Cellular
flows are physically relevant because they are universally used to mimic, e.g., rolls in thermal
convection or Langmuir circulation, i.e. the wind-driven helical circulation on the sea surface.
This specific example offers the possibility of analysing and discussing how the sedimentation
process turns out to be extremely sensitive to the flow details. To be more specific, for the class
of cellular flows, both an increase and a reduction of the rate of sedimentation with respect to
the still-fluid case can occur, depending on the flow parameters such as, e.g., flow geometry
and pulsating frequency, as well as on the usual fluid-dynamics adimensional numbers which
measure the density ratio and the effects of inertia (Stokes), gravity (Froude) and diffusivity
(Péclet). Our findings lead to the following conclusion of interest in the realm of applications:
any attempt to model the effect of flows on particle sedimentation cannot avoid taking into
account the full details of the flow field.

This paper is organized as follows. In section 2 the basic equations governing the time
evolution of inertial particles under gravity and in a prescribed flow are given, together with
the associated Fokker–Planck equation for the particle PDF. In section 3, the problem of
finding the terminal velocity of the sedimenting particles is formulated in a Hermitian form
and tackled via a second-quantization formalism. The resulting set of auxiliary equations to
obtain the terminal velocity is presented in the limit of small Stokes numbers. In section 4,
the auxiliary equations are solved via direct numerical simulations in two dimensions and
the obtained results are discussed. Conclusions and perspectives follow in section 5. The
appendix is devoted to some mathematical and computational details.

2. General equations

Let us consider the motion of a single, small, rigid, spherical particle of radius b immersed
in an incompressible d-dimensional flow u(x, t) (with d � 2). Even if some of our results
are more general, the flow field will be assumed either steady or periodic in time (with period
T), and periodic in space (i.e. cellular, with period of order L) [17, 18]. We shall focus our
attention on the so-called Stokes regime, in which the surrounding flow is differentiable on
scales of the order of b; we shall also neglect the feedback of the particle on the flow. The
motion is thus influenced by gravity, buoyancy and drag [19], to which Brownian noise should
be added in order to take into account the thermal fluctuations of the fluid, or alternatively
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(if under investigation are micro-organisms, considered as inertial particles but with a limited
self-capacity of moving) to mimic disorganized movement of small biological entities e.g. in
the ocean. Moreover, we neglect the Basset, Faxen, Oseen and Saffman corrections [19] and
other possible effects due to rotationality, high relative velocity or non-sphericity [20].

Lastly, the well-known added-mass effect will be taken into account in a simplified way.
To understand this point, one should remember that the evolution equation for the particle
trajectory X(t) is simply Newton’s law,

Ẍ(t) = · · · + cd
du(X(t), t)

dt
+ cD

Du(X(t), t)

Dt
, (1)

in which the force exerted by the fluid on the particle must include the fact that some fluid is
moved by the particle itself during its motion. This is why, on the right-hand side of (1), there
appears the time derivative of u. The latter can be interpreted as a derivative following either
the particle trajectory, d/dt ≡ ∂t + Ẋ · ∂, or the fluid path, D/Dt ≡ ∂t + u · ∂. Several works
dealt with this aspect [19, 21–23] and explained the historical evolution and the different roles
played by the coefficients cd and cD. In the present work, for the sake of simplicity, we assume
cD = 0 and, consequently, the whole effect is included into cd.

In this framework, it is customary to recast (1) from its original second-order formulation
into a dynamical system consisting of two coupled differential equations, by introducing the
covelocity V ≡ Ẋ − βu(X(t), t). Here, β ≡ 3ρf/(ρf + 2ρp) is an adimensional coefficient,
where ρp and ρf are the densities of the particle and the fluid, respectively. According to the
ratio between the two densities, β ranges from 0 (ρf � ρp: heavy particles, like drops in
gases) to 3 (ρf � ρp: light particles, like bubbles in liquids), and becomes 1 when the two
densities are equal (and buoyancy effects absent). Note that the covelocity differs from the
slip (relative) velocity (≡Ẋ(t) − u(X(t), t)) by a term (1 − β)u(X(t), t), which vanishes
only for neutral particles. The concept of slip velocity is probably more familiar in connection
with the study of relative acceleration. In our case, the use of covelocity is due to the fact
that it strongly simplifies the equations of motion, properly keeping into account the added-
mass effect without any need to introduce time derivatives of the external flow. However,
u(x, t) being completely known, from the knowledge of V one can immediately find the real
velocity Ẋ .

The Stokes time is defined as τ ≡ b2/3νβ, with ν being the kinematic viscosity. It
represents the typical response time of the particle to changes in the external flow. Note that
a tracer particle, usually referred to as a passive scalar, is characterized not only by β = 1
(which, alone, is not sufficient to rule out possible inertial effects due to the finite size of the
particle) but also by τ = 0.

Denoting by g, κ and η(t) the gravity acceleration, the particle diffusivity and the standard
white noise (stationary Gaussian process defined by 〈η〉 = 0 and 〈ηµ(t)ην(0)〉 = δµνδ(t)),
respectively, we have⎧⎨

⎩
Ẋ = V + βu(X(t), t)

V̇ = (1 − β)u(X(t), t) − V

τ
+ (1 − β)g +

√
2κ

τ
η(t).

(2)

Note that, for dimensional consistency, the random term requires the presence of a time scale
at the denominator. The latter has been chosen as τ itself for the sake of simplicity and
convenience. In this way, in the passive-scalar limit τ → 0, equations (2) reduce to the
well-known expression Ẋ(t) = u(X(t), t) +

√
2κη(t).

The study can be carried on in the corresponding phase space (x,v, t). The full phase-
space approach is needed for inertial particles because the dynamics remains second-order, and
there is no collapse onto a first-order problem unlike for the passive scalar. Let us consider the
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probability density that, at time t, the particle is at location x with a covelocity v, and denote
it by p(x,v, t). This satisfies the Fokker–Planck equation associated with the stochastic
differential equation (2):

Lp ≡
{

∂

∂t
+

∂

∂xµ

[vµ + βuµ(x, t)] +
∂

∂vµ

[
(1 − β)gµ

+
(1 − β)uµ(x, t) − vµ

τ

]
− κ

τ 2

∂2

∂vµ∂vµ

}
p

= 0. (3)

The linear operator L inside the curly brackets of (3) carries a factor κ/τ 2 in front of the
Laplacian with respect to the velocity, which is the highest-derivative term. Therefore, we
may expect some singularity in the limits of vanishing diffusivity or large Stokes time.

The terminal settling velocity of the inertial particle [24, 25] is defined as the average
particle velocity

w ≡ 1

T

∫
dt

∫
dx

∫
dv[v + βu(x, t)]p(x,v, t), (4)

where the temporal integration is clearly omitted in the presence of steady flows1.
In general, such renormalized terminal velocity can differ from the bare terminal velocity,

i.e. the particle settling velocity in a still fluid, whose value can easily be found to be

w∗ = (1 − β)gτ. (5)

The difference turns out to be

	w ≡ w − w∗ = T −1
∫

dt

∫
dx

∫
dv u(x, t)p(x,v, t). (6)

In what follows, we shall only take into account flows with zero average (i.e.,∫
dt

∫
dx u(x, t) = 0) and possessing odd parity with respect to reflections in the vertical

direction. Such flows are relevant to analyse the vertical component 	w of the terminal
velocity discrepancy because no mean contribution is present, and every (eventual) nonzero
result, originated from the component of p antisymmetric in the vertical coordinate, is to be
interpreted as due to preferential concentration in areas of rising or falling fluid.

Our plan is thus to solve (3), Lp = 0, for the phase-space density and to plug the result
in expression (6) to find 	w.

3. Analytical investigation at small Stokes number

We shall first focus on situations in which the Stokes time is much smaller than the flow
typical time scale, so that the particle adapts its own velocity to that of the underlying fluid
very rapidly. More precisely, denoting by L and U the typical length scale and the typical
velocity of the fluid respectively, in this section we shall only deal with small Stokes number,
St ≡ τ/(L/U). As we also take into account gravity and diffusivity (besides inertia), a
thorough adimensionalization of the problem also requires the introduction of the Froude and
Péclet numbers, defined as Fr ≡ U/

√
gL and Pe ≡ LU/κ , respectively.

1 It is worth noting that expression (4) can also be deduced by means of a multiscale expansion [26–29], imposing a
diffusive rescaling for space and time and considering covelocity exclusively as a fast variable. At the first order in
the expansion, the average settling velocity (4) emerges naturally as the quantity which must vanish when imposing
the solvability condition, necessary to proceed to higher orders. In other words, to obtain an effective-diffusivity
behaviour at the second order of the expansion, one should perform a Galilean transformation into a frame of reference
such as to eliminate any drift. This will be the subject of our future investigation.
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Note that our choice of the denominator in St (the advective time scale L/U ) is ‘universal’
for steady laminar flows, while for time-dependent flows other possibilities could also hold,
e.g. the period T or the inverse of the Lyapunov exponent. Our choice is the simplest
one because L and U are the quantities which also appear in Fr and Pe, while the other
options may also bring into play other adimensional quantities such as the Kubo or Strouhal
numbers. Moreover, according to our adimensionalization, it is possible to study the effect of
an oscillation frequency at fixed St leaving the particle response time τ unchanged (note, on
the other hand, that this is not the case when investigating the role of β: see remark (ii) near
the end of this section).

As a first result, we see immediately that the vertical component of the bare terminal
velocity (5), assumed as positive if pointing downwards and written in units of U, is rewritten
as

w∗ = (1 − β)St Fr−2. (7)

Let us adimensionalize x with L, t with L/U and u with U, and let us denote the new
variables with the same letters as before. Equation (3) can now be written in an adimensional
form after introducing an appropriate variable for the rescaled covelocity: the correct one turns
out to be y ≡ √

τ/2κv. With this notation, the operator acting upon the density p(x,y, t)

(appropriately normalized in the new variables) becomes:

L = −St−1

[
∂

∂yµ

yµ +
1

2

∂2

∂yµ∂yµ

]
+ St−1/2

[√
2

Pe
yµ

∂

∂xµ

+

√
Pe

2
(1 − β)uµ(x, t)

∂

∂yµ

]

+ St0
[

∂

∂t
+ βuµ(x, t)

∂

∂xµ

]
+ St1/2

[√
Pe

2

1 − β

Fr2 Gµ

∂

∂yµ

]

≡ −St−1A0 + St−1/2A1 + St0A2 + St1/2A3, (8)

where G ≡ g/g is the unit vector pointing downwards, and the expressions of the operators
Ai (i = 0, . . . , 3) are easily identified from (8). It is worth noting that A0 is an Ornstein–
Uhlenbeck operator acting on covelocity coordinates only, which leads to a Hermitian
reformulation of the problem in terms of a second-quantization formalism for the covelocity
variable. Technical details on the analytical computation are left to the appendix: here we
only recall the essential steps. By introducing a power-series expansion in St for the particle
PDF, we obtain a chain of advection–diffusion equations (see (10)) for the auxiliary quantities
ψ∅

n (x, t) (n ∈ N) defined in the appendix, in which lower-order quantities act as source terms
for higher-order ones. Such equations can be solved sequentially, at least numerically, once
the external flow is given. As a result, expression (6) for the variation of terminal velocity (in
units of U) is rewritten as

	w =
(

T

L/U

)−1 ∞∑
m=0

St2+m

∫
dt

∫
dx u(x, t)ψ∅

4+2m(x, t), (9)

where the integral on covelocity has already been performed (see (A.8)). Note that only the
vertically-antisymmetric components of ψ∅

4+2m(x, t), hereafter denoted by the superscript (a)

(in order to distinguish them from the vertically-symmetric counterparts (s)), contribute to the
spatial integral in (9) for the vertical component 	w. Therefore, in order to study the leading
contribution in 	w, quadratic in St (the cumbersome equations needed to compute O(St3) are
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reported in the appendix), it is sufficient to consider the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mψ
∅(a)
4 = −(1 − β)Fr−2Gµ

∂

∂xµ

ψ∅
2

Mψ∅
2 = (1 − β)

∂uµ

∂xν

∂uν

∂xµ

ψ∅
0 �⇒ ψ∅

2 = ψ
∅(s)
2

Mψ∅
0 = 0 �⇒ ψ∅

0 = const = ψ
∅(s)
0 ,

(10)

where we imposed uniform initial conditions (such that ψ∅
0 is a normalization constant) and

denoted the adimensionalized advection–diffusion operator with

M ≡ ∂

∂t
+ uµ(x, t)

∂

∂xµ

− Pe−1 ∂2

∂xµ∂xµ

. (11)

From (10), it is easy to understand that both ψ∅
0 and ψ∅

2 do not depend on Fr, and the former
is clearly also independent of β. This means that ψ∅

2 behaves like (1 − β), therefore ψ
∅(a)
4 is

proportional to both (1 − β)2 and Fr−2.
Let us now focus on this leading contribution at order St2 in 	w, corresponding to the

term m = 0 in (9). From the analytical point of view, such considerations imply that we can
introduce a non-universal (in the sense that it depends on Pe and possibly on other properties
of the surrounding flow, e.g. its time frequency or space geometry, but not on St, Fr or β)
function

	W ≡ L

UT

∫
dt

∫
dx Gµuµ(x, t)

ψ
∅(a)
4 (x, t)

Fr−2(1 − β)2
, (12)

such that we can write

	w = [(1 − β)St/Fr]2	W + O(St3). (13)

Equation (13) summarizes the following two main analytical results for the variation of the
actual terminal velocity in the limit of small inertia:

(i) It is influenced by gravity in the same way as the bare terminal velocity. Indeed, both w∗

in (7), and the coefficient in square brackets beside 	W in (13), are proportional to Fr−2,
i.e. to g. This result is not trivial, because e.g. it does not hold, in general, at higher orders
in St, nor, consequently, for the full renormalized terminal velocity.

(ii) It has the opposite parity, in (1 − β), with respect to the bare terminal velocity. Indeed,
w∗ scales with (1 − β) while the above-mentioned coefficient with its square. In other
words, if a specific flow under specific conditions is found to increase the falling of heavy
particles, then the same flow under the same conditions (e.g. the same St, which may
imply different L/U because τ depends on β) must simultaneously decrease the rising
of light particles, and vice versa.

The dependence on molecular diffusivity is more difficult to obtain analytically. In
particular, as already pointed out, the large-Pe limit is singular, and nothing precise can be
said about intermediate Pe. In contrast, for small Pe, it can be shown rigorously that the
behaviour of 	W is O(Pe2) or higher. As a particular case, we will show in section 4 that,
for the 2D stationary square-cell flow defined in (14), very well-defined asymptotics are found
numerically for both small and large Pe. In any case, one should keep in mind that ours is a
series expansion in powers of St, whose coefficients may become very large when varying the
other parameters. In order for this to work, St should be assumed small enough so as to make
the following terms negligible with respect to the previous ones.
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4. Numerical investigation: the cellular flow

From the analytical point of view, the results reported in section 3 are the only available, and
all refer to the O(St2) correction. Proceeding at higher orders is not an easy task: e.g., the
equation in (10) for ψ

∅(a)
6 is much more complicated (see (A.7)), and involves as a source

term also the vertically-symmetric component ψ
∅(s)
4 , whose equation is in turn by far more

cumbersome than that for the corresponding antisymmetric part. Clearly, this problem also
reflects on the numerical approach: solving such equations by direct numerical simulation
(DNS) is beyond our possibilities. The DNS approach can however be applied to ψ∅

2 and ψ
∅(a)
4

if the surrounding flow is simple enough.
An accurate study has been performed for the 2D cellular flow:{

u1 = sin(kx1) cos[x2 + B sin(ωt)]

u2 = −k cos(kx1) sin[x2 + B sin(ωt)],
(14)

where the parameters k, B and ω represent respectively the cell aspect ratio (vertical extension
over the horizontal one) and the amplitude and pulsation of the oscillations in the vertical
direction x2, assumed as positive downwards. In other words, in usual dimensional variables,
the cell has a horizontal extension of 2πL/k and a vertical one of 2πL, and oscillates vertically
with spatial excursion ±BL and period T = 2πL/Uω.

Such a synthetic flow, introduced as an instance mimicking Langmuir circulation or
Rayleigh–Bénard convection [30], has then been used for both numerical and analytical
studies in several domains, ranging from front propagation to polymer transport, and from
anomalous diffusion to chaotic maps [15, 18, 23, 31–35], because of its simplicity and its
ability to capture different physical behaviours.

The figures in this section all refer to the flow described by (14) for heavy particles
(β = 0) with B = 2, and (except for a couple of forthcoming aside remarks) in square cells
(k = 1) at the specific value Fr = 1.

Our numerical procedure mainly consists in comparing the outcomes of two different ways
of computing the vertical component of the terminal velocity. On one hand, we performed
a Lagrangian simulation (LS) of the particle dynamics (2), as a function of St, at the fixed
value Pe = 5 and for two different values of the frequency (ω = 0 and ω = 0.6). In this
scheme (see, e.g., [36], which however applies to a somehow different situation) the single
particle is followed and the external flow is ‘sampled’ only along the particle trajectory; the
Milstein method is used for the integration. As long as equations (2) hold, which is especially
true for our case β = 0, the outcome of our LS can thus be thought of as the real particle
evolution2. On the other hand, we also performed a high-resolution (10242) DNS of the field
equations (10), and then we computed the sedimentation velocity using (9) or equivalently,
at this order in St, (12). The numerical integration consisted of a standard 2/3-dealiased
pseudospectral method with time evolution implemented by a standard second-order Runge–
Kutta scheme. The results of the DNS are then used both to verify the validity of our ‘field’
approach truncated at the quadratic approximation in St (by comparing the outcomes of DNS
and LS at the same values of the other parameters, as in figures 1 and 3), and to obtain
a numerical description of the role played, e.g., by Pe (figure 2) and ω (figure 4) in the
expression of 	W in (13).

2 In order to test the importance of conclusion (i) of section 3, we verified through LS that the full renormalized
terminal velocity does not rescale simply with Fr−2, differently from its bare value and its leading correction at
O(St2).
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St

∆
w

0 0.5 1 1.5 2

−0.075

−0.05

−0.025

0

0.025

0.05

Figure 1. Comparison between LS (solid line) of (2) and the parabola (dashed line) resulting from
(12) using the DNS solution of (10) for the variation of the falling velocity as a function of the
Stokes number at ω = 0.

Pe

∆
W

10−2 1 102 104
10−10

10−5

1

105

1010

Figure 2. Dependence on the Péclet number for the variation of the falling velocity (solid line) at
O(St2) from DNS. The dashed line represents the cubic asymptote found analytically, while the
dotted line is the linear asymptote with a multiplicative coefficient derived from a fit.

First, we test our analytical result on the O(St2) correction in the steady case (ω = 0). To
do this, we performed a LS of (2) at Pe = 5,3 and solved the system (10) for ψ

∅(a)
4 (and for ψ∅

2
in parallel) by means of DNS. In figure 1, for small (and intermediate) values of St, we report
such LS and the parabola St2	W , where 	W is computed through (12) with the ψ

∅(a)
4 found

from DNS: the agreement is very good until about St = 0.2. Moving at larger St, it is evident
how the increase in the falling velocity reaches a maximum value at St � 0.4, then there

3 Also the value Pe = 1000 was tested with qualitatively similar results.

8



J. Phys. A: Math. Theor. 41 (2008) 385501 M Martins Afonso

St

∆
w

0.05 0.1 0.15 0.2 0.25 0.3
−0.02

−0.015

−0.01

−0.005

0

Figure 3. Same as in figure 1 but with ω = 0.6. Note the decrease in the falling velocity opposed
to the static-carrier-flow case.

is a crossover and a maximum reduction in settling takes place at St � 1. The asymptotic
vanishing at large St is a general feature in the ballistic limit, in which the particle reacts
so slowly to the variations of the surrounding flow that the latter has basically no influence
on settling. Such a limit is singular, as already pointed out, because a particle with infinite
inertia in a finite-correlated flow is equivalent to a particle with finite inertia in a δ-correlated
flow [37, 38], thus a technique like uniform-coloured-noise approximation should be used
to deal with this situation properly. In contrast, we think that our perturbative approach at
small St should be able to capture at least the maximum in the plot, taking into account the
following orders like ψ

∅(a)
6 or higher. Of course, this behaviour could not be caught correctly

by our previous quadratic approximation, which is not able to describe inflection points and
subsequent changes in convexity.

Let us now turn to the dependence of 	W on Pe. As already mentioned at the end of
section 3, two well-defined asymptotics can be found, as shown in figure 2. In particular, at
small Pe, it can be shown by means of perturbative analysis that 	W approaches f (k)Pe3,
where f (k) = (k4 + 3k2 − 2)/32(k2 + 1)2 (i.e., f (k) � 0 ⇔ k � (

√
17 − 3)/2 � 0.56).4 Note

that this result is more stringent than the general behaviour O(Pe2) (or higher) reported at the
end of section 3, and only applies to this particular instance of flow. In contrast, the linear
asymptote 0.19 Pe at large Pe comes from a fitting procedure, because this limit is singular.
Note, however, that this does not necessarily imply that the terminal velocity diverges at infinite
Pe: what we are discussing in this paragraph is only the behaviour of the O(St2) term, and
clearly there is the possibility of a regularizing resummation if one also considers higher-order
terms.

In figure 3 we show that for a nonzero pulsating frequency the effect of the carrier flow
may be the opposite. Indeed, at ω = 0.6, the variation of the terminal velocity from LS is
now negative at small inertia, and our perturbative field approach (the dashed parabola with

4 As an example of the role played by the cell aspect ratio k, we found from DNS that 	W can have the opposite
sign when under consideration are cells not square but rather rectangular (extended horizontally) with k = 1/2.
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Figure 4. Dependence on the pulsation ω for the variation of the falling velocity (solid line) at
O(St2), with Pe = 5.

coefficient 	W computed through DNS) again provides a good approximation at least until
St = 0.2.

This is confirmed by the fact that, analysing 	W as a function of ω through our DNS (see
figure 4), we find a reduction in settling in a window of values of ω. For larger frequencies
(ω > 1.4) an increase in the sedimenting velocity occurs again. Moreover, in the limit
ω → ∞, the effect of the flow on the inertial particle is generally expected to vanish, because
the latter does not have enough time to adapt its own velocity to the one it feels around itself,
which varies very rapidly.

This clearly shows how sensitive to the flow details the terminal velocity may be.

5. Conclusions

We have investigated how the terminal velocity of sedimenting particles is influenced by a
background flow. In the limit of small St, we have reduced this problem to the solution of
two coupled forced advection–diffusion equations. Such equations hold for generic velocities,
laminar or turbulent, possessing odd parity with respect to reflections in the vertical direction.
From our analysis the complete knowledge of the particle motion is available: the PDF of
having a particle in a given position at a given time is directly accessible once the differential
equations are solved. The determination of the terminal velocity is a particular product of our
analysis. Apart from the limiting case of small Péclet numbers (which may be relevant e.g.
in the already-mentioned case of self-movement of micro-organisms mimicked by Brownian
noise), one has to resort to numerical simulations to find the PDF and the consequent terminal
velocity. This task is easily accomplished for two-dimensional laminar flows, which clearly
lead to the following conclusions. The value of St alone is not sufficient to argue if the
sedimentation is faster or slower with respect to what happens in still fluid. In particular, for
square, static cellular flows, at both intermediate and high Pe, we found an increase of the
falling velocity at relatively small St, and a reduction starting from St larger than some critical
value. A similar transition is also found for a fixed St and assuming the cell to be oscillating

10
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in the vertical direction with frequency ω. We found the remarkable result that, appropriately
tuning ω, a decrease in settling can also be obtained at small St, accompanied by an increase
now occurring at sufficiently large St. We also studied the effect of the flow spatial geometry
on the terminal velocity. In the limit of small Pe, the expression for the terminal velocity can
be extracted analytically from our equations and its explicit dependence on the cell aspect
ratio isolated. Changing the cell aspect ratio appropriately can cause a reduction in falling at
small St.

As a last point, it is now possible to make a comparison between our method and the
well-known ‘continuum’ approximation [3] at small St. The latter neglects diffusivity in (2)
and, by recursive substitution, obtains a field description of the covelocity:

v(x, t) = (1 − β)u(x, t) + St(1 − β)[Fr−2G − (∂tu + u · ∂u)] + O(St2)

= v(0) + Stv(1) +
∞∑
l=2

Stlv(l), (15)

where v(l) = (1 − β)(−∂t − u · ∂)lu for l � 2. The relevant equation for the physical-space
density ρ(x, t) is simply the continuity equation, with velocity given by v(x, t) + βu(x, t):

∂tρ + ∂ · [(v + βu)ρ] = 0 (16)

(here we neglect a possible diffusive term for the sake of simplicity in the comparison). By
plugging (15) in (16), one finds a system of equations for the coefficients ρ(l)(x, t) of the
power-series expansion ρ = ∑∞

l=0 Stlρ(l). A clear parallelism holds between each ρ(l)(x, t)

and the corresponding quantity of our formalism, ψ∅
2l (x, t): indeed, to find the variation of

the vertical terminal velocity at order l in St, one has to perform a spatial–temporal integration
of the vertical fluid velocity times (the vertically-antisymmetric component of) either of these
two quantities. The comparison can be carried out by comparing the system of equations for
ρ(l) with that for ψ∅

2l after setting diffusivity to zero in the latter. The result is that ρ(0), ρ(1)

and ρ
(a)
(2) obey the same equations (10) as ψ∅

0 , ψ∅
2 and ψ

∅(a)
4 , respectively, without the diffusive

term. However, it turns out that at higher orders in St the two approaches differ: e.g., both
ρ

(s)
(2) and ρ

(a)
(3) satisfy equations completely different from the ones (A.7) for the corresponding

quantities ψ
∅(s)
4 and ψ

∅(a)
6 reported in the appendix. Therefore, even if the same conclusions

drawn at O(St2) on the dependence of 	W could also be found with the continuum approach,
we can assert that our rigorous approach proves fruitful because it represents the only correct
way to attack higher orders (�3) in St.
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Appendix. Mathematical and computational details

In this section we provide some details of the calculation which leads to (10).
A Hermitian reformulation of the problem is convenient. Let us define p†(y) ≡ exp(−y2),

the Gaussian kernel of A0: A0p† = 0. After decomposing the particle PDF as

p(x,y, t) = p
1/2
† (y)ψ(x,y, t), (A.1)

our aim is to find the operators Bi such that Aip = −p
1/2
† Biψ (i = 0, . . . , 3).
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This can be achieved by means of a second-quantization algorithm. One can indeed
introduce the operators of creation and annihilation

a±
µ = yµ ∓ ∂

∂yµ

,

in terms of which

yµ = 1

2

(
a+

µ + a−
µ

)
,

∂

∂yµ

= 1

2

(
a−

µ − a+
µ

)
and the vacuum state turns out to be a−

µ |0〉 = 0 ⇔ |0〉 = p
1/2
† .

Defining

αµ =
√

Pe

2
(1 − β)uµ(x, t) − 1√

2Pe

∂

∂xµ

,

γµ = − 1√
2Pe

∂

∂xµ

, ζµ =
√

Pe

2

1 − β

Fr2 Gµ,

the operators we are looking for read:

B0 = 1

2

(
y2 − ∂2

∂yµ∂yµ

− d

)
= 1

2
a+

µa−
µ , B1 = αµa+

µ + γµa−
µ ,

B2 = − ∂

∂t
− βuµ(x, t)

∂

∂xµ

, B3 = ζµa+
µ.

Note that B0 can be interpreted as the occupation number, and the following commutation
relations hold: [

B0, a
±
µ

] = ±a±
µ ,

[
a−

µ , a+
ν

] = 2δµν,
[
a±

µ , a±
ν

] = 0.

On the other hand, B2 does not carry any creation or annihilation operator (A2 is independent
of y) and vanishes when under investigation are very heavy particles in a stationary state.

The following step consists in the development

ψ(x,y, t) =
∞∑

n=0

Stn/2ψn(x,y, t) (A.2)

and in the study of the set of equations arising at each (integer and half-i.) order in St:

B0ψn =

⎧⎪⎪⎨
⎪⎪⎩

0 for n = 0
B1ψn−1 for n = 1
B1ψn−1 + B2ψn−2 for n = 2
B1ψn−1 + B2ψn−2 + B3ψn−3 for n � 3.

(A.3)

Such relations can be solved recursively by exploiting the simple inversion formula for a
generic function �:

B0� = a+
µk

· · · a+
µ1

|0〉 �⇒ � = 1

k
a+

µk
· · · a+

µ1
|0〉.

Therefore, one obtains

ψn(x,y, t) = ψ∅
n (x, t)|0〉 + ψµ1

n (x, t)a+
µ1

|0〉 + · · · +
1

n!
ψµ1···µn

n (x, t)a+
µn

· · · a+
µ1

|0〉, (A.4)

where

ψµ1···µk

n (x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αµk
ψ

µ1···µk−1
n−1 + ζµk

ψ
µ1···µk−1
n−3

+ k−1B2ψ
µ1···µk

n−2

+ 2k−1γµk+1

〈
ψ

µ1···µk+1···µk

n−1

〉
for k = 1, . . . , n − 2

αµk
ψ

µ1···µk−1
n−1 for k = n − 1, n

(A.5)
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and 〈· · ·〉 implies a symmetrization on the repeated index (i.e. the sum of the possible
permutations of the repeated index, divided by the number of such terms). Note that, by
definition, the quantity a+

µk
· · · a+

µ1
|0〉 equals the multidimensional Hermite polynomial of

degree k,H
�µ
k (y).

At each step one must also impose the corresponding solvability condition, which forbids
the presence of states proportional to |0〉 on every right-hand side of expressions (A.3), in
order to avoid inversion problems. These constraints give

2γµψ
µ

n+1 + B2ψ
∅
n = 0 ∀ n ∈ N. (A.6)

By expressing each ψ
µ

n+1, through (A.5), as a function of a combination of ψ∅
m for some m � n,

expressions (A.6) are to be interpreted as equations for the quantities ψ∅
n . Together with the

normalization condition
∫

dx ψ∅
n ∝ δn0, they can be solved recursively (numerically, or even

analytically in some fortunate circumstances) once the basic flow u(x, t) is given. All such
equations are of the advection–diffusion type and are forced by lower-order, already-solved
quantities, with the exception of the equations for n = 0 and n = 1, which are homogeneous
and thus imply ψ∅

0 = const. and ψ∅
1 = 0 under our assumptions. Moreover, one should note

that even-order equations are forced only by even-order quantities, and the same happens with
odd n’s: this means that ψ∅

2n+1 = 0 ∀ n ∈ N; therefore, our expansion (A.2) reduces to a series
in integer powers of St only. In (10) we reported the first few equations corresponding to even
n’s, separating the components symmetric and antisymmetric in the vertical direction. Note
that the spatial gradient and the flow field are vertically antisymmetric, while the vertical unit
vector G (reminiscent of gravity) is symmetric in this sense. Hereafter we report the equation
for ψ

∅(a)
6 , needed to compute the following term in 	w and which also requires knowledge of

ψ
∅(s)
4 :

Mψ
∅(a)
6 = −(1 − β)Fr−2Gµ∂µ

(
ψ

∅(s)
4 − Nν∂νψ

∅
2

)
+ ∂µMNµψ

∅(a)
4

− (1 − β)2Fr−2Gµψ∅
0 ∂ν(2∂µM + M∂µ + ∂µNλ∂λ/2)uν

+ 2(1 − β)3Fr−2Gµψ∅
0 (∂λuν)(∂µ∂νuλ)

Mψ
∅(s)
4 = ∂µMNµψ∅

2 − (1 − β)ψ∅
0 ∂µ{[∂νMNν/2 − B2M + Nν∂ν(Nλ∂λ/2 − B2)] uµ

+ (Nλ∂λ/2 − B2)∂νNµuν}, (A.7)

where Nµ ≡ √
2/Peαµ, and M has already been defined in (11) (it equals Nµ∂µ − B2).

Starting from the quantities ψ∅(a)
n with even n, we can reconstruct the variation of the

adimensionalized terminal velocity by substituting back (A.4) into (A.2) into (A.1) into (6),
and by making use of the orthonormalization of the Hermite polynomials H

�µ
k (y) in the integral

in the y variable with weight p
1/2
† (y) (note that 1 = H ∅

0 ):

	w =
(

T

L/U

)−1∫
dt

∫
dx

∫
dy u(x, t)p(x,y, t)

= L

UT

∫
dt

∫
dx u(x, t)

∫
dy p

1/2
† (y)ψ(x,y, t)

= L

UT

∫
dt

∫
dx u(x, t)

∫
dy e−y2/2

∞∑
n=0

Stn/2ψn(x,y, t)

= L

UT

∞∑
n=0

Stn/2
∫

dt

∫
dx u(x, t)

∫
dy e−y2/2

n∑
k=0

1

k!
ψµ1···µk

n (x, t)a+
µk

· · · a+
µ1

|0〉

= L

UT

∞∑
n=0

Stn/2
n∑

k=0

1

k!

∫
dt

∫
dx u(x, t)ψµ1···µk

n (x, t)

∫
dy e−y2/2H

�µ
k (y)

13



J. Phys. A: Math. Theor. 41 (2008) 385501 M Martins Afonso

= L

UT

∞∑
n=0

Stn/2
n∑

k=0

1

k!

∫
dt

∫
dx u(x, t)ψµ1···µk

n (x, t)δk0

= L

UT

∞∑
n=0

Stn/2
∫

dt

∫
dx u(x, t)ψ∅

n (x, t)

= L

UT

∞∑
m=0

Stm
∫

dt

∫
dx u(x, t)ψ∅

2m(x, t)

= L

UT

∞∑
m=0

Stm
∫

dt

∫
dx u(x, t)ψ

∅(a)
2m (x, t)

= L

UT

∞∑
m=2

Stm
∫

dt

∫
dx u(x, t)ψ

∅(a)
2m (x, t), (A.8)

which corresponds to (9).
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